306 research outputs found

    Optimal Spectrum Access for Cognitive Radios

    Full text link
    In this paper, we investigate a time-slotted cognitive setting with buffered primary and secondary users. In order to alleviate the negative effects of misdetection and false alarm probabilities, a novel design of spectrum access mechanism is proposed. We propose two schemes. First, the SU senses primary channel to exploit the periods of silence, if the PU is declared to be idle, the SU randomly accesses the channel with some access probability asa_s. Second, in addition to accessing the channel if the PU is idle, the SU possibly accesses the channel if it is declared to be busy with some access probability bsb_s. The access probabilities as function of the misdetection, false alarm and average primary arrival rate are obtained via solving an optimization problem designed to maximize the secondary service rate given a constraint on primary queue stability. In addition, we propose a variable sensing duration schemes where the SU optimizes over the optimal sensing time to achieve the maximum stable throughput of the network. The results reveal the performance gains of the proposed schemes over the conventional sensing scheme. We propose a method to estimate the mean arrival rate and the outage probability of the PU based on the primary feedback channel, i.e., acknowledgments (ACKs) and negative-acknowledgments (NACKs) messages.Comment: arXiv admin note: substantial text overlap with arXiv:1206.615

    To Sense or Not To Sense

    Full text link
    A longer sensing time improves the sensing performance; however, with a fixed frame size, the longer sensing time will reduce the allowable data transmission time of the secondary user (SU). In this paper, we try to address the tradeoff between sensing the primary channel for Ï„\tau seconds of the time slot proceeded by randomly accessing it and randomly accessing primary channel without sensing to avoid wasting Ï„\tau seconds in sensing. The SU senses primary channel to exploit the periods of silence, if the primary user (PU) is declared to be idle the SU randomly accesses the channel with some access probability asa_s. In addition to randomly accesses the channel if the PU is sensed to be idle, it possibly accesses it if the channel is declared to be busy with some access probability bsb_s. This is because the probability of false alarm and misdetection cause significant secondary throughput degradation and affect the PU QoS. We propose variable sensing duration schemes where the SU optimizes over the optimal sensing time to achieve the maximum stable throughput for both primary and secondary queues. The results reveal the performance gains of the proposed schemes over the conventional sensing scheme, i.e., the SU senses the primary channel for Ï„\tau seconds and accesses with probability 1 if the PU is declared to be idle. Also, the proposed schemes overcome random access without sensing scheme. The theoretical and numerical results show that pairs of misdetection and false alarm probabilities may exist such that sensing the primary channel for very small duration overcomes sensing it for large portion of the time slot. In addition, for certain average arrival rate to the primary queue pairs of misdetection and false alarm probabilities may exist such that the random access without sensing overcomes the random access with long sensing duration

    Optimal Random Access and Random Spectrum Sensing for an Energy Harvesting Cognitive Radio with and without Primary Feedback Leveraging

    Full text link
    We consider a secondary user (SU) with energy harvesting capability. We design access schemes for the SU which incorporate random spectrum sensing and random access, and which make use of the primary automatic repeat request (ARQ) feedback. We study two problem-formulations. In the first problem-formulation, we characterize the stability region of the proposed schemes. The sensing and access probabilities are obtained such that the secondary throughput is maximized under the constraints that both the primary and secondary queues are stable. Whereas in the second problem-formulation, the sensing and access probabilities are obtained such that the secondary throughput is maximized under the stability of the primary queue and that the primary queueing delay is kept lower than a specified value needed to guarantee a certain quality of service (QoS) for the primary user (PU). We consider spectrum sensing errors and assume multipacket reception (MPR) capabilities. Numerical results show the enhanced performance of our proposed systems.Comment: ACCEPTED in EAI Endorsed Transactions on Cognitive Communications. arXiv admin note: substantial text overlap with arXiv:1208.565

    Optimal Selection of Spectrum Sensing Duration for an Energy Harvesting Cognitive Radio

    Full text link
    In this paper, we consider a time-slotted cognitive radio (CR) setting with buffered and energy harvesting primary and CR users. At the beginning of each time slot, the CR user probabilistically chooses the spectrum sensing duration from a predefined set. If the primary user (PU) is sensed to be inactive, the CR user accesses the channel immediately. The CR user optimizes the sensing duration probabilities in order to maximize its mean data service rate with constraints on the stability of the primary and cognitive queues. The optimization problem is split into two subproblems. The first is a linear-fractional program, and the other is a linear program. Both subproblems can be solved efficiently.Comment: Accepted in GLOBECOM 201

    Optimal Random Access and Random Spectrum Sensing for an Energy Harvesting Cognitive Radio

    Full text link
    We consider a secondary user with energy harvesting capability. We design access schemes for the secondary user which incorporate random spectrum sensing and random access, and which make use of the primary automatic repeat request (ARQ) feedback. The sensing and access probabilities are obtained such that the secondary throughput is maximized under the constraints that both the primary and secondary queues are stable and that the primary queueing delay is kept lower than a specified value needed to guarantee a certain quality of service (QoS) for the primary user. We consider spectrum sensing errors and assume multipacket reception (MPR) capabilities. Numerical results are presented to show the enhanced performance of our proposed system over a random access system, and to demonstrate the benefit of leveraging the primary feedback.Comment: in WiMob 201

    Cooperative Cognitive Relaying Under Primary and Secondary Quality of Service Satisfaction

    Full text link
    This paper proposes a new cooperative protocol which involves cooperation between primary and secondary users. We consider a cognitive setting with one primary user and multiple secondary users. The time resource is partitioned into discrete time slots. Each time slot, a secondary user is scheduled for transmission according to time division multiple access, and the remainder of the secondary users, which we refer to as secondary relays, attempt to decode the primary packet. Afterwards, the secondary relays employ cooperative beamforming to forward the primary packet and to provide protection to the secondary destination of the secondary source scheduled for transmission from interference. We characterize the diversity-multiplexing tradeoff of the primary source under the proposed protocol. We consider certain quality of service for each user specified by its required throughput. The optimization problem is stated under such condition. It is shown that the optimization problem is linear and can be readily solved. We show that the sum of the secondary required throughputs must be less than or equal to the probability of correct packets reception.Comment: This paper was accepted in PIMRC 201

    Maximum Throughput of a Secondary User Cooperating with an Energy-Aware Primary User

    Full text link
    This paper proposes a cooperation protocol between a secondary user (SU) and a primary user (PU) which dedicates a free frequency subband for the SU if cooperation results in energy saving. Time is slotted and users are equipped with buffers. Under the proposed protocol, the PU releases portion of its bandwidth for secondary transmission. Moreover, it assigns a portion of the time slot duration for the SU to relay primary packets and achieve a higher successful packet reception probability at the primary receiver. We assume that the PU has three states: idle, forward, and retransmission states. At each of these states, the SU accesses the channel with adaptive transmission parameters. The PU cooperates with the SU if and only if the achievable average number of transmitted primary packets per joule is higher than the number of transmitted packets per joule when it operates alone. The numerical results show the beneficial gains of the proposed cooperative cognitive protocol.Comment: Accepted WiOpt 201
    • …
    corecore